Abstract

Experimental results obtained within the last fifteen years on multi-keV X-ray sources irradiated with nanosecond scale pulse duration 3ω laser light at TW power levels by CEA and collaborators are discussed in this review paper. Experiments were carried out on OMEGA and GEKKO XII laser facilities where emitting materials in the 5–10 keV multi-keV energy range are intermediate Z value metals from titanium to germanium. Results focused on conversion efficiency improvement by a factor of 2 when an underdense plasma is created using a laser pre-pulse on a metallic foil, which is then heated by a second laser pulse delayed in time. Metal coated inner surface walls of plastic cylindrical tube ablated by laser beam impacts showed that plasma confinement doubles X-ray emission duration as it gives adequate plasma conditions (electron temperature and density) over a long period of time. Low-density aerogels (doped with metal atoms uniformly distributed throughout their volume or metal oxides) contained in a plastic cylinder have been developed and their results are comparable to gas targets. A hybrid target concept consisting of a thin metal foil placed at the end of a cylinder filled with low density aerogel has emerged as it could collect benefits from pre-exploded thin foils, efficient laser absorption in aerogel, and confinement by cylinder walls. All target geometry performances are relatively close together at a given photon energy and mainly depend on laser irradiation condition optimizations. Results are compared with gas target performances from recent NIF experiments allowing high electron temperatures over large dimension low density plasmas, which are the principal parameters for efficient multi-keV X-ray production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call