Abstract

This study estimated the energy incident on patients in radiography, mammography and CT using data related to X-ray beam quantity and quality. The total X-ray beam quantity is the average Air Kerma multiplied by the X-ray beam area and expressed as the Kerma-Area Product (Gy cm(-2)). The X-ray beam quality primarily depends on the target material (and anode angle), X-ray voltage (and ripple) as well as X-ray beam filtration. For any X-ray spectra, dividing total energy (fluence × mean energy) by the X-ray beam Kerma-Area Product yields the energy per Kerma-Area Product value (ε/KAP). Published data on X-ray spectra characteristics and energy fluence per Air Kerma conversion factors were used to determine ε/KAP factors. In radiography, ε/KAP increased from 6 mJ Gy(-1) cm(-2) at the lowest X-ray tube voltage (50 kV) to 25 mJ Gy(-1) cm(-2) at the highest X-ray tube voltage (140 kV). ε/KAP values ranged between 1 and 5 mJ Gy(-1) cm(-2) in mammography and between 24 and 42 mJ Gy(-1) cm(-2) in CT. Changes in waveform ripple resulted in variations in ε/KAP of up to 15 %, similar to the effect of changes resulting in the choice of anode angle. For monoenergetic X-ray photons, there was a sigmoidal-type increase in ε/KAP from 2 mJ Gy(-1) cm(-2) at 20 keV to 42 mJ Gy(-1) cm(-2) at 80 keV. However, between 80 and 150 keV, the ε/KAP shows variations with changing photon energy of <10 %. Taking the average spectrum energy to consist of monoenergetic X rays generally overestimates the true value of ε/KAP. This study illustrated that the energy incident on a patient in any area of radiological imaging can be estimated from the total X-ray beam intensity (KAP) when X-ray beam quality is taken into account. Energy incident on the patient can be used to estimate the energy absorbed by the patient and the corresponding patient effective dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call