Abstract

Arsenic is a non-essential element that poses risks in many environments, including soil, groundwater, and surface water. Insights into the environmental biogeochemistry of As can be gained by comparing As and P reaction processes. Arsenic and P are chemical analogues, and it is proposed that they have similar chemical behaviors in environmental systems. However some chemical properties of As and P are distinct, such as redox reactions, causing the biogeochemical behavior of the two elements to differ. In the environment, As occurs as either As(V) or As(III) oxyanions (e.g., AsO43− or AsO33−). In contrast, P occurs predominantly as oxidation state five plus; most commonly as the orthophosphate ion (PO43−). In this paper, data from four published case studies are presented with a focus on P and As distribution and speciation in soil. The goal is show how analyzing P chemistry in soils can provide greater insights into As reaction processes in soils. The case studies discussed include: (1) soil developed from shale parent material, (2) mine-waste impacted wetland soils, (3) phosphate-amended contaminated soil, and (4) plants grown in biochar-amended, mine-contaminated soil. Data show that while P and As have competitive reactions in soils, in most natural systems they have distinct biogeochemical processes that create differing mobility and bioavailability. These processes include redox reactions and rhizosphere processes that affect As bioavailability. Results from these case studies are used as examples to illustrate how studying P and As together allows for enhanced interpretation of As biogeochemical processes in soils.

Highlights

  • IntroductionArsenic is a naturally occurring element in soils, sediments, and the subsurface

  • Arsenic is a naturally occurring element in soils, sediments, and the subsurface. It occurs in surface water, plants, and groundwater

  • As K-edge X-ray absorption near edge structure (XANES) spectra were collected from points of interest to determine the As oxidation state

Read more

Summary

Introduction

Arsenic is a naturally occurring element in soils, sediments, and the subsurface. It occurs in surface water, plants, and groundwater. As poses risks to humans or animals because of elevated concentrations in water or plant samples [1]. Elevated arsenic concentrations are especially prevalent in mineimpacted environments. The environmental risks are influenced by management of soils, sediments, groundwater, surface water, and ecosystems. Due to the active biogeochemical cycle of As, knowledge of its species and reactions in natural and managed systems is required to reduce contamination risks

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.