Abstract

Laser powder bed fusion (LPBF) is one of the major additive manufacturing techniques that industries have adopted to produce complex metal components. The scientific and industrial literature from the past few years reveals that there is a growing demand for the development of high-strength aluminium alloys for LPBF. However, some major challenges remain for high-strength aluminium alloys, especially in relation to printability and the control of defects. Possible strategies that have been identified to achieve high strength with printability include the adaptation of existing high-strength cast and wrought alloys to LPBF, the design of new alloys specifically for LPBF, and the development of aluminium-based composites to achieve unique combinations of properties and processability. Whilst review papers exist for aluminium alloys in general for the related work up to 2019, the purpose of this paper is to review the latest developments related to high-strength aluminium alloys for LPBF up to early 2022, including alloy and process design strategies to achieve high strength without cracking. It aims to provide fresh insights into the current state-of-the-art based on a review of extensive yield strength data for a wide spectrum of aluminium alloys and tempers that have been studied and/or commercialised for LPBF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.