Abstract

In this paper, we present a comprehensive and detailed review of dynamic soaring process, and in particular, its application to unmanned aerial vehicles (UAVs). We start by explaining the biological inspiration that comes from soaring birds and how researchers have tried to utilize the dynamic soaring phenomenon/maneuver and apply it to UAVs. We present and discuss the fundamentals of wind shear models in both the linear and nonlinear cases. Moreover, a comprehensive parametric characterization of the key performance parameters for the dynamic soaring maneuver is given. Numerical methods for nonlinear trajectory optimization are summarized and methodologies capable of generating rapid solutions suitable for real-time implementation, are presented. Additionally, the paper introduces mathematical modeling and procedure to generate the optimized dynamic soaring trajectory. Through this paper, a consolidated platform is built, which not only covers technical aspects of advancements made over the passage of time, but also identifies and discusses the existing challenges. These challenges which are encountered by UAVs curtail the potential utility of dynamic soaring. Integrating dynamic soaring with morphology and inclusion of nonlinear control theory in the flight control system are introduced as a possible future research directions that may overcome the existing limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.