Abstract

Purpose: The objective of this study is to review researches regarding factors that potentially affect adolescent calcium (Ca) metabolism, and to suggest a potential modeling approach for optimizing gastrointestinal Ca absorption and peak bone mass. Background: Optimal gastrointestinal Ca absorption is a key to maximizing peak bone mass in adolescents. Urine Ca excretion in adolescents rises only after bone accretion is saturated, indicating that higher intestinal Ca absorption and bone retention is necessary to ensure maximum bone accretion. Hence, maximizing peak bone mass is possible by controlling the factors influencing gastrointestinal Ca absorption and bone acc retion. However, a mechanism that explains the unique adolescent Ca metabolism has not yet been elucidated. Review: Dietary factors that enhance gastrointestinal Ca absorption may increase the available Ca pool usable for bone accretion, and a specific hormone may direct optimal Ca utilization to maximize peak bone mass. IGF-1 is an endocrine hormone whose levels peak during adolescence and increase fractional Ca absorption and bone Ca accretion. Prebiotics, generally obtained from dietary sources, have been reported to exert a beneficial effect on Ca absorption via microbiota activity. We selected and reviewed three candidates that could be used to propose a comprehensive Ca metabolic model for optimal Ca absorption and peak bone mass in adolescents. Modeling: Modeling has been used to investigate Ca metabolism and its regulators. Herein, we reviewed previous Ca modeling studies. Based on this review, we proposed a method for developing a comprehensive model that includes regulatory effectors of IGF-1 and prebiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call