Abstract

The demand for tall buildings has increased over the past decades for cultural, financial, and technological reasons. Such slender structures are more flexible and vulnerable to wind-induced vibrations. Additionally, wind speed exponentially increases with height, resulting in larger wind loading on higher levels and complex turbulent regimes. Such effects call for more innovative approaches to enhance the resilience of tall buildings while accounting for the sustainability implications. Current methodologies to control the vibrations using auxiliary dampers are typically limited in their applicable bandwidth. The aerodynamic modifications are specific to a particular wind direction and characteristics and cannot adapt to the changing climate or that of flow regimes due to the new construction in the proximity of the target building. There have been major advances in using secondary façades to achieve sustainability through ventilation and energy-saving applications around the world. These advances have resulted in the development of adaptive facades for architectural and energy applications. This review paper discusses the available approaches and potential opportunities to utilize the existing adaptive façade system capabilities (for energy applications) to alter building aerodynamics. For this purpose, the paper concisely discusses aerodynamic modification, surface roughness effects, available bio-inspired approaches, and potential morphing material capabilities to provide valuable insights into understanding the flow-control mechanism of such systems, potentially leading to innovative designs of façade systems. Opportunities have been identified to combine this concept with smart technologies to develop smart façades with the aerodynamic performance that leads to mitigating wind-induced vibration in tall buildings. The review of existing research on this topic opens up opportunities for enhancing the use of facades as active, dynamic, and smart systems that not only enhance the performance of the tall buildings under wind-induced vibrations but also can result in long term energy saving, leading to more resilient and sustainable communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call