Abstract
AbstractDeveloping an effective model for non-equilibrium states is of great importance for a variety of problems related to chemical synthesis and combustion. Rate-Controlled Constrained-Equilibrium (RCCE), a model order reduction method that originated from the second law of thermodynamics, assumes that the non-equilibrium states of a system can be described by a sequence of constrained-equilibrium states kinetically controlled by a relatively small number of constraints within acceptable accuracy. The full chemical composition at each constrained-equilibrium state is obtained by maximizing (or minimizing) the appropriate thermodynamic quantities, e. g., entropy (or Gibbs functions), subject to the instantaneous values of RCCE constraints. Regardless of the nature of the kinetic constraints, RCCE always guarantees a correct final equilibrium state. This paper reviews the fundamentals of the RCCE method, its constraints, constraint potential formulations, and major constraint selection techniques, as well as the application of the RCCE method to combustion of different fuels using a variety of combustion models. The RCCE method has been proven to be accurate and to reduce computational time in these simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.