Abstract

The mechanical properties of ice and snow are reviewed. The tensile strength of ice varies from 0.7–3.1 MPa and the compressive strength varies from 5–25 MPa over the temperature range −10°C to −20°C. The ice compressive strength increases with decreasing temperature and increasing strain rate, but ice tensile strength is relatively insensitive to these variables. The tensile strength of ice decreases with increasing ice grain size. The strength of ice decreases with increasing volume, and the estimated Weibull modulus is 5. The fracture toughness of ice is in the range of 50–150 kPa m1/2 and the fracture-initiating flaw size is similar to the grain size. Ice-soil composite mixtures are both stronger and tougher than ice alone. Snow is a open cellular form of ice. Both the strength and fracture toughness of snow are substantially lower than those of ice. Fracture-initiating flaw sizes in snow appear to correlate to the snow cell size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call