Abstract

LASER ablation propulsion (LAP) is a major new electric propulsion concept with a 35-year history. In LAP, an intense laser beam [pulsed or continuous wave (CW)] strikes a condensedmatter surface (solid or liquid) and produces a jet of vapor or plasma. Just as in a chemical rocket, thrust is produced by the resulting reaction force on the surface. Spacecraft and other objects can be propelled in this way. In some circumstances, there are advantages for this technique compared with other chemical and electric propulsion schemes. It is difficult to make a performance metric for LAP, because only a few of its applications are beyond the research phase and because it can be applied in widely different circumstances that would require entirely different metrics. These applications range from milliwatt-average-power satellite attitude-correction thrusters through kilowatt-average-power systems for reentering near-Earth space debris and megawatt-to-gigawatt systems for direct launch to lowEarth orbit (LEO). We assume an electric laser rather than a gas-dynamic or chemical laser driving the ablation, to emphasize the performance as an electric thruster. How is it possible for moderate laser electrical efficiency to givevery high electrical efficiency? Because laser energy can be used to drive an exothermic reaction in the target material controlled by the laser input, and electrical efficiency only measures the ratio of exhaust power to electrical power. This distinction may seem artificial, but electrical efficiency is a key parameter for space applications, in which electrical power is at a premium. The laser system involved in LAP may be remote from the propelled object (on another spacecraft or planet-based), for example, in laser-induced space-debris reentry or payload launch to low planetary orbit. In other applications (e.g., the laser–plasma microthruster that we will describe), a lightweight laser is part of the propulsion engine onboard the spacecraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.