Abstract

Concrete is a discreet material that consist of aggregate as filler and cement paste (matrix) as binder. Both of them work together as a composite or monolithic mechanism, depends on the interface zone characteristic that developed by aggregate. Monolithic mechanism leading to failure catastrophically (brittle and instantly), while composite mechanism prevails failure occurs gradually. Monolithic mechanism maybe found in high strength concrete where hardness and stiffness of aggregate are compatible with their matrix. At the moment when the matrix tensile strength (ft) is reached. The cracks will propagate quickly cutting both aggregates and matrix, as well at once. Contrary to the composite condition, when the matrix tensile strength is reached, the aggregate will take over the load and the crack will propagate through the interface zone. The perspective of fracture mechanics and the failure parameters explain the mechanism of crack propagation based on the energy principles. This investigation reviews the phenomenon of concrete compressive strength with angular aggregates compared to rounded aggregates on cylindrical specimens with diameter (d) 15 cm and height (h) 30 cm of the same compressive strength. The difference between them, shows the tendency of the influence of the interface zone as traction, which significantly contributes to the performance capacity before collapse

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.