Abstract
Accumulating evidence supports that the hormone prolactin (PRL) is galactopoietic in dairy ruminants. Accordingly, the inhibition of PRL secretion by the dopamine agonists quinagolide and cabergoline causes a sharp decline in milk production and could be useful in several critical periods. First, PRL inhibition may reduce the incidence during the periparturient period of metabolic disorders caused by the abrupt increase in energy demand for milk production. Metabolic disturbances can be lessened by reducing milk output by milking once a day or incompletely in the first few days of lactation. The injection of cows with quinagolide for the first 4 days of lactation reduced milk production during the first week of lactation without any residual effects. Blood glucose and calcium concentrations were higher and β-hydroxybutyric acid concentration was lower in the quinagolide-treated cows. Second, PRL inhibition may help sick or injured lactating cows, considering that they can fall into severe negative energy balance when they are unable to consume enough feed to support their milk production. This leads to a weakened immune system and increased susceptibility to diseases. When cows were subjected to feed restriction and were treated with quinagolide, the decrease in milk production was accelerated without any residual effects. The quinagolide-treated cows had higher glucose and lower β-hydroxybutyric acid and non-esterified fatty acid concentrations than the control cows did. Third, PRL inhibition may facilitate drying-off in high-yielding cows, because they are often dried off while still producing significant quantities of milk, which delays mammary involution and increases risk of mastitis. Therefore, strategies that reduce milk production before drying-off and accelerate mammary gland involution could be an important management tool. In this context, inhibition of PRL was utilised to accelerate mammary gland dry-off. Quinagolide decreased milk production within the first day of treatment, and both quinagolide and cabergoline induced more rapid changes in several markers of mammary gland involution after drying-off. In addition, quinagolide improved the animals’ resistance to intramammary infection. These results suggest that the inhibition of PRL could be a strategy for facilitating drying-off, reducing metabolic stress during the postpartum period, and alleviating acute nutritional stress during illness without compromising the overall productivity of dairy ruminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.