Abstract

This article provides a literature review that details the development of inelastic constitutive modeling as it relates to polycrystalline materials. This review distinguishes between inelastic constitutive models that account for nonlinear behavior at the microstructural level, time-independent classic plasticity models, and time-dependent unified models. Particular emphasis is placed on understanding the underlying theoretical framework for unified viscoplasticity models where creep and classical plasticity behavior are considered the result of applied boundary conditions instead of separable rates representing distinct physical mechanisms. This article establishes a clear understanding of the advantages of the unified approach to improve material modeling. This review also discusses recent topics in constitutive modeling that offer new techniques that bridge the gap between the microstructure and the continuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call