Abstract

Abstract Photocatalysis by utilizing semiconductors for the removal of toxic pollutants has gained tremendous interest for remediation purposes. The organic pollutants usually include; pesticides, dyes and other phenolic compounds. An imperative restraint associated with the photocatalytic effectiveness of the catalyst is the rapid recombination of the light generated electrons and holes. The particle agglomeration and electron-hole recombination hinders the rate of pollutant removal. For decades, researchers have used metal-sulfides efficiently for photocatalytic dye degradation. The recent use of hybrid nanomaterials with the combination of graphene derivatives such as graphene oxide and reduced graphene oxide (GO/rGO)-metal sulfide has gained interest. These composites have displayed an impressive upsurge in the photocatalytic activity of materials. The current review describes the various researches on dye photodegradation by employing (GO/rGO)-metal sulfide, exhibiting a boosted potential for photocatalytic dye degradation. A comprehensive study on (CuS, ZnS and CdS)–GO/rGO hybrid composites have been discussed in detail for effective photocatalytic dye degradation in this review. Astonishingly improved dye degradation rates were observed in all these studies employing such hybrid composites. The several studies described in the review highlighted the varying degradation rates based on diverse research parameters and efficacy of graphene derivatives for enhancement of photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call