Abstract

Cyclodextrins (CDs) are cyclic oligomers of glucopyranose units that play an important role as a host in inclusion complexes, where non-covalent interactions are involved. They have been extensively studied in supramolecular chemistry. Because of its biocompatibility, relatively non-toxicity and relatively low price, CDs have been widely employed for encapsulation of several substances, being used in food, cosmetic and pharmaceutical industries. Nuclear Magnetic Resonance spectroscopy (NMR) is one of the most useful techniques to study interactions of cyclodextrins with guest compounds. It is relatively easy to apply, the experiments are fast and it is the only technique that provides information on the right orientation of the guest molecule inside the cavity and also on other important parameters related to the physico-chemical characteristics of the inclusion complexes. In this review, it will be discussed the study of inclusion complexes between drugs and cyclodextrins by different NMR techniques. Initially, a brief introduction of the properties of cyclodextrins, its importance as innovative drug carrier systems and its applicability is reviewed. Then different NMR techniques used for characterization of inclusion complexes are detailed, with examples studied in our group, which involves since simple measures of 1H-NMR spectrum to more sophisticated experiments, e.g. Diffusion Ordered SpectroscopY (DOSY), NOE methods (ROESY), T1 measure and solid NMR by 13C Cross-Polarization Magic Angle Spinning (CPMAS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call