Abstract
This paper reviews recent developments in processing, properties and applications of composite and multilayer ferroelectric thin films. Methods such as physical vapor deposition, chemical vapor deposition and sol-gel, for the processing of composite and multilayer ferroelectric films are described. Among the techniques reviewed for the fabrication of multilayer ferroelectric films, molecular beam epitaxy and atomic layer metal-organic chemical vapor deposition are the most suitable techniques for the deposition of superlattices with atomically sharp interface. As an efficient and quick way, pulsed-laser deposition has been widely used for the preparation of ferroelectric multilayers and heterostructures. Superior dielectric properties have been reported for sol-gel-derived micrometer-thick ceramic/ceramic composite ferroelectric films. Properties of multilayer ferroelectric films vary as a function of periodicity, which can be exploited for the development of various electronic devices. Enhanced characteristics of composite and multilayer films with selected examples from recent literature and the origin of enhancement are discussed and summarized. Finally, applications of the materials for the development of various electronic devices are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.