Abstract
Cigarette smoking is the main preventable cause of death in developed countries, and the development of more effective treatments is necessary. Cumulating evidence suggests that cognitive enhancement may contribute to the addictive actions of nicotine. Several studies have demonstrated that nicotine enhances cognitive performance in both smokers and non-smokers. Genetic studies support the role of both dopamine (DA) and nicotinic acetylcholine receptors (nAChRs) associated with nicotine-induced cognitive enhancement. Based on knockout mice studies, beta2 nAChRs are thought to be essential in mediating the cognitive effects of nicotine. alpha7nAChRs are associated with attentional and sensory filtering response, especially in schizophrenic individuals. Genetic variation in D2 type DA receptors and the catechol-O-methyltransferase enzyme appears to moderate cognitive deficits induced by smoking abstinence. Serotonin transporter (5-HTT) gene variation also moderates nicotine-induced improvement in spatial working memory. Less is known about the contribution of genetic variation in DA transporter and D4 type DA receptor genetic variation on the cognitive effects of nicotine. Future research will provide a clearer understanding of the mechanism underlying the cognitive-enhancing actions of nicotine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.