Abstract

During the last few years, a large number of new bacteriocins produced by lactic acid bacteria (LAB) have been identified and characterized. LAB-bacteriocins comprise a heterogeneous group of physicochemically diverse ribosomally-synthesized peptides or proteins showing a narrow or broad antimicrobial activity spectrum against Gram-positive bacteria. Bacteriocins are classified into separate groups such as the lantibiotics (Class I); the small (<10 kDa) heat-stable postranslationally unmodified non-lantibiotics (Class II), further subdivided in the pediocin-like and anti Listeria bacteriocins (subclass IIa), the two-peptide bacteriocins (subclass IIb), and the sec-dependent bacteriocins (subclass IIc); and the large (>30 kDa) heat-labile non-lantibiotics (Class III). Most bacteriocins characterized to date belong to Class II and are synthesized as precursor peptides (preprobacteriocins) containing an N-terminal double-glycine leader peptide, which is cleaved off concomitantly with externalization of biologically active bacteriocins by a dedicated ABC-transporter and its accessory protein. However, the recently identified sec-dependent bacteriocins contain an N-terminal signal peptide that directs bacteriocin secretion through the general secretory pathway (GSP). Most LAB-bacteriocins act on sensitive cells by destabilization and permeabilization of the cytoplasmic membrane through the formation of transitory poration complexes or ionic channels that cause the reduction or dissipation of the proton motive force (PMF). Bacteriocin producing LAB strains protect themselves against the toxicity of their own bacteriocins by the expression of a specific immunity protein which is generally encoded in the bacteriocin operon. Bacteriocin production in LAB is frequently regulated by a three-component signal transduction system consisting of an induction factor (IF), and histidine protein kinase (HPK) and a response regulator (RR). This paper presents an updated review on the general knowledge about physicochemical properties, molecular mode of action, biosynthesis, regulation and genetics of LAB-bacteriocins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call