Abstract

In their rocksalt structure, rare-earth monosulfides offer a more stable alternative to alkali metals to attain low or negative electron affinity when deposited on various III-V and II-VI semiconductor surfaces. In this article, the authors first describe the successful deposition of lanthanum monosulfide via pulsed laser deposition on Si and MgO substrates. These thin films have been characterized by x-ray diffraction, atomic force microscopy, high resolution transmission electron microscopy, ellipsometry, Raman spectroscopy, ultraviolet photoelectron spectroscopy, and Kelvin probe measurements. For both LaS/Si and LaS/MgO thin films, the effective work function of the submicron thick thin films was determined to be about 1 eV from field emission measurements using the scanning anode field emission microscopy technique. The physical reasons for these highly desirable low work function properties were explained using a patchwork field emission model of the emitting surface. In this model, nanocrystals of low work function materials having a 〈100〉 orientation perpendicular to the surface and outcropping it are surrounded by a matrix of amorphous materials with a higher work function. To date, LaS thin films have been used successfully as cold cathode emitters with measured emitted current densities as high as 50 A/cm2. Finally, we describe the successful growth of LaS thin films on InP substrates and, more recently, the production of LaS nanoballs and nanoclusters using pulsed laser ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call