Abstract

Abstract Home range is an ecological concept that affects many aspects of the life of vertebrates and hence understanding how it varies between species is crucial. Mammalian home range size has been linked to body size and diet, but these studies were based predominantly on terrestrial species and most specifically excluded bats. As the only group of flying mammals, bats experience distinctly different constraints on movement, and hence home range. However, despite their diversity, relatively little is known about the home ranges of bats, and this is the first global review assessing correlates of their home range size. Our hypothesis is that home range will be impacted by different ecological conditions experienced by the bats and by the biological traits of the bats themselves. We performed a meta-analysis based on published data for 81 bat species to identify variables that contribute most to home range size. Sex, wing loading, functional group, colony size, dietary class, distance from the equator (latitudinal region), habitat type, and the interaction between habitat type and latitudinal region were all important explanatory variables. Wing loading was positively correlated with home range size—while females, open-air foragers, large colony sizes, and bats in temperate regions consistently had large home ranges. Understanding the correlates of home range has important implications, for example, for bat conservation and for assessing the risk of spillover of zoonotic pathogens from bats to humans and livestock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call