Abstract

Manta ray generates thrust by flapping two pectoral fins, which inspires the fin structure design for a robotic manta ray. An effective and efficient structure of the fin will significantly enhance the swimming performance of the robotic manta ray. In this paper, the biomechanics of manta ray’s swimming is first reviewed. Then the existing designs of robotic manta ray are introduced in detail, with their tradeoffs and limitations discussed. One specific structure, Fin Ray Effect®, is further investigated for the potential design of our own robotic manta ray, RoMan IV. The characteristics of the structure are derived analytically. Both its advantages and shortcomings as the fin structure are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call