Abstract

Heating and cooling loads which are compensated by heating, ventilation, and air-conditioning (HVAC) systems, are the main reason for energy uses in buildings. Energy utilized by HVAC system accounts for two-thirds of a building’s total energy consumption. Excessive energy is consumed when HVAC systems fail to operate as intended. This is often due to several factors such as inappropriate monitoring and control strategy, lack of understanding of the dynamics of thermal loads, and system complexity. Amidst several models, estimation of cooling load using Resistance Capacitance (RC) models have proved to provide more robust and accurate estimates of the building load based on measured data but the use of this method is not without challenges. This study aims to highlight common challenges associated with implementation of the RC method for thermal modeling of cooling load. Past and current research have handled some of the challenges by introducing simplifying assumptions which if not adequately selected can lead to significant deviation between model performance and measured data. Without proper understanding of the challenges, engineers may not be able to place a high degree of confidence in load calculation methods and the computer implementations that they use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call