Abstract

Microplastics (MPs) are ubiquitous in all kinds of water matrices. The different properties of MPs facilitate their role as carriers of emerging contaminants like pesticides, pharmaceuticals, PFAS and surfactants. Hydrophobic pesticides have a high tendency to be adsorbed on non-polar substances such as MPs. The widespread use of atrazine has caused it to be omnipresent in the environment, leading to their concurrent presence with MPs. The partitioning and fate of atrazine sorbed MPs are governed by various environmental conditions and physicochemical characteristics of different matrices. The interaction of MPs with pesticides enables MPs to serve as vectors for the transport of pesticides in aquatic media. In this work, the sorption of atrazine on polyethylene MPs was investigated in batch adsorption studies. The characterization of MPs was conducted using FTIR, SEM and XRD. By examining the characteristics of MPs and atrazine, an adsorption mechanism is proposed. The sorption of atrazine on PS was mainly governed by van der Waals forces and pore-filling mechanism. The effect of contact time on the adsorption of ATZ on PS was examined. Contact time was used to compare the results of different experiments as it is necessary to establish an equilibrium time that can be used in all the experiments. It was found that the pseudo-second order model was a better fit than pseudo first order-model based on the highest R2 values obtained. Finally, the effects of salinity and pH were also measured and found to be relatively limited. The results of this study prove that MPs can act as carriers of pesticides like atrazine in aqueous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.