Abstract
Uranium-6 wt pct niobium (14 at pct niobium) displays the shape memory effect (SME), where deformation proceeds by twinning and twin rearrangement via boundary migration within the SME regime. In-situ neutron diffraction during deformation suggests that after SME strain is exhausted, deformation proceeds via another twinning mechanism that does not recover to the original parent orientation upon reheating and transformation. Here we show from in-situ tensile and compressive loading and unloading experiments that early post-SME twins partially reverse during unloading, which is evident by rapid texture evolution, and this reversion is responsible for the inelastic portion of the previously reported ~ 2 pct strain recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.