Abstract
Recognition-based assembly of micron- to nano-sized colloidal particles functionalized with DNA has generated great interest in the past decade; however, reversing the assembly process is typically achieved by thermal denaturation of the oligonucleotide duplexes. Here, we report an alternative disassembly approach at a fixed temperature using competitive hybridization events between immobilized and soluble oligonucleotide strands. Microspheres are first aggregated via primary hybridization events between immobilized DNA strands with a weak, but sufficient, affinity for partner strands to link complementary surfaces together. To reverse the aggregation process, soluble oligonucleotides are then added to competitively displace the original hybridization partners through secondary hybridization events. Using flow cytometry to quantify hybridization events and microscopy to examine DNA-mediated aggregation and redispersion, we found that the efficiency of competitive displacement is based upon (1) the difference in base pair matches between the primary and secondary target for the same probe sequence and (2) the concentration of hybridizing oligonucleotides participating in microsphere aggregation. To the best of our knowledge, this study is the first to employ DNA hybridization events to mediate reversible adhesion between colloidal particles at a fixed temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.