Abstract

In vitro oocyte growth is widely studied as an alternative fertility preservation approach. Several animal models are used to generate extensive information on this complex process regulated by the constant and dynamic interaction between the oocyte and its somatic compartment throughout follicle growth and maturation. A two-dimensional attachment mouse secondary follicle culture system was used to assess the oocyte's capacity to overcome disconnection from its somatic companions at different developmental stages for final competence acquisition. To test this, complete mechanical denudation of oocytes from preantral (PA) and early antral (EA) follicles was performed. Established endpoints were the oocyte's potential to reconnect with somatic cells and the impact of connectivity disruption on mature oocyte quality. This study proves that oocytes from PA and EA cultured mouse follicles can overcome complete denudation, restoring likely functional transzonal projections with no significant differences in meiotic and developmental competence compared with those from intact cultured follicles. These novel findings constitute good premises for developing successful strategies to rescue human oocyte competence in the context of in vitro culture approaches such as nonhuman chorionic gonadotropin triggered in vitro maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.