Abstract
Reversine, a small synthetic purine analogue, has been reported to be effective in tumor suppression. In the present study, we demonstrated an antitumor activity of reversine that could suppress cellular proliferation and induce cell cycle arrest and apoptosis in human breast cancer cell lines. To evaluate whether reversine could suppress cell growth of MCF-7 and MDA-MB-231 cells and induce cell death, the cell viability, cell cycle, and apoptosis were determined in this study. Reversine treatment in human breast cancer cells reduced cell viability in a dose-dependent manner. Cell cycle accumulation at the G2/M phase in reversine-treated cells was also determined. Moreover, polyploidy was also found in reversine-treated cells. Apoptosis in reversine-treated cells was exhibited with PARP cleavage and caspase-3 and caspase-8 activation, but not caspase-9 activation, indicating that caspase-dependent apoptosis mediated by an extrinsic pathway took place in reversine-treated cells. Furthermore, reversine attenuated cell death in cells pretreated with a pan-caspase inhibitor before reversine treatment. In the present study, we demonstrated that reversine contributes to growth inhibition in human breast cancer cells through cell cycle arrest, polyploidy, and/or apoptosis induction. The apoptosis mediated by reversine was induced by the mitochondria-independent pathway. Therefore, the potential role of reversine as a novel therapeutic agent for the treatment of breast cancer is worthy of further investigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.