Abstract

A ‘solvent facilitated’ coaxial electrospinning process was used to produce reversible narrow temperature gap thermochromic, core-shell fibres. A thermochromic composite composed of crystal violet lactone (the leuco dye), bisphenol A (the developer) and 1-dodecanol (the phase-change solvent) was entrained as core material inside poly(methyl methacrylate) shells. A mutual core and shell solvent (chloroform) was used to obtain low interfacial tension between the core and shell spinning solutions. This enabled room temperature entrainment of the low molecular weight, low viscosity core fluid. In order to minimize the effect of light scattering and subsequently produce fibres with visible colour transitions, the fibres were produced with external diameters of 3–8μm and core diameters of 1.7–5.7μm. In order to produce core-shell fibres with repeated, reversibly thermochromic behaviour and a stable colour developed state, it was necessary to entrain a dye composite that contained an excess developer, essentially making this composite non-thermochromic prior to entrainment. The fibres were analyzed using SEM and DSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.