Abstract
Multiresponsive wormlike micelles (WLMs) remain a significant challenge in the construction of smart soft materials based on surfactants. Herein, we report the preparation of a viscoelastic wormlike micellar solution based on a new redox-responsive surfactant, sodium dodecylselanylpropyl sulfate (SDSePS), and commercially available benzyl tertiary amine (BTA) in the presence of CO2. In this system, SDSePS can be reversibly switched on (selenide) and off (selenoxide) by a redox reaction, akin to that previously reported for benzylselanyl or phenylselanyl surfactants. By alternately adding H2O2 and N2H4·H2O, WLMs can be reversibly broken and formed because of the transformation of the hydrophilic headgroup of SDSePS, originating from the reversible formation of selenoxide. Moreover, WLMs can also be switched on and off by cyclically bubbling CO2 and N2 because of the variation of the binding interaction between SDSePS and BTA, resulting from the reversible protonation of BTA. This interesting and unique multiresponsive behavior makes the current WLMs a potential candidate for smart control of the "sol-gel" transition or substantial thickening of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.