Abstract

Microenvironment responsive nanomaterials are attractive for therapeutic applications with regional specificity. Here we report pH responsive gold nanoparticles which are designed to aggregate in acidic condition similar to cancer environment and returned to its original disassembled states in a physiological pH. The pH responsive behavior of the particles is derived by change of electrostatic interaction among the particles where attraction and repulsion play a major role in low and high pH of the environment, respectively. Since different electrostatic interaction behavior of the particles in varied pH is induced not by irreversible chemical change but by simple protonation differences, the pH responsive process of assembly and disassembly is totally reversible. The low pH specific aggregation of gold nanoparticles resulted in red shift of plasmonic absorption peak and showed higher photothermal efficacy in acidic pH than in normal physiological pH. The low pH specific photothermal effect with long wave laser irradiation was directly applied to cancer specific photothermal therapy and resulted higher therapeutic effect for melanoma cancer cells than non-pH responsive gold nanoparticles.

Highlights

  • Microenvironment responsive nanomaterials are attractive for therapeutic applications with regional specificity

  • The stepwise synthesis of CytC/ssDNA-AuNPs has been characterized by measuring plasmonic absorption peak shift, their size distribution and zeta potential in solution

  • Since the CytC/ssDNA-AuNPs response to the acidic environment and form aggregated particle clusters, the particles result low pH specific high photothermal efficiency on near infrared radiations. This low pH specific aggregation of the synthesized particles can be potentially employed for cancer targeted therapy

Read more

Summary

Introduction

Microenvironment responsive nanomaterials are attractive for therapeutic applications with regional specificity. The application of large particles, are limited since the larger the particles are less advantageous to be excreted from the body and the accumulated particles eventually have a potential to be toxic[19,20] Another well-known method to achieve high NIR absorption is to fabricate AuNP structures with high aspect ratios such as nanorods, urchin-like or branched shapes. We propose newly designed AuNPs those can aggregate selectively in tumors by responding to relatively low pH which is specific property of cancer shifting the plasmonic absorption to far-red and reversibly disassemble when the particle clusters meet a normal physiological pH around 7.425

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.