Abstract

Design and fabrication of smart materials with reversible wettability for oil–water separation have attracted worldwide attention due to the increasingly serious water pollution problem. In this study, a rough oxide coating with micro/nanoscale structures is developed on the 304 stainless steel mesh (SSM) by laser ablation. The smart surface with ethanol immersion and natural drying treatments shows the wetting conversion between underwater superoleophobicity and superhydrophobicity. Based on the wettability transition behavior, both light and heavy oil–water mixtures can be separated with the high separation efficiency. Moreover, after being exposed to various corrosive solutions and high temperatures, the smart surface still shows prominent environmental stability. Switchable surface with excellent properties should be an optimal choice to solve the environmental conditions that need to be addressed urgently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.