Abstract

We present the configurations and stability of the endohedral metallofullerene Ni@B80 by using strict and elaborate geometric modeling. The ultrafast spin switching on Ni@B80 is explored through ab initio calculations. It is shown that there are three stable configurations of Ni@B80 endohedral fullerene with the encaged Ni atom located at different sites. The ultrafast spin switching on Ni@B80via Λ processes can be achieved through at least eight paths with different laser pulses. Among them, the fastest one can be accomplished within 100 fs. In particular, it is found that all the spin-switching processes achieved on the H-type structure are reversible with the use of the same or different laser pulses. Considering the obtained high fidelities of these switching processes, the present theoretical prediction could lead to promising applications in the design of integrated spin-logic devices through appropriate spin manipulation in endohedral boron fullerenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.