Abstract

Ionic gating is a powerful technique for tuning the physical properties of a material via electric field-induced charge doping, but is prone to introduce extrinsic disorder and undesired electrochemical modifications in the gated material beyond pure electrostatics. Conversely, reversible, volatile and electrostatic modulation is pivotal in the reliable design and operation of novel device concepts enabled by the ultrahigh induced charge densities attainable via ionic gating. Here we demonstrate a simple and effective method to achieve reversible and volatile gating of surface-sensitive ultrathin niobium nitride films via controlled oxidation of their surface. The resulting niobium oxide encapsulation layer exhibits a capacitance comparable to that of non-encapsulated ionic transistors, withstands gate voltages beyond the electrochemical stability window of the gate electrolyte, and enables a fully-reversible tunability of both the normal-state resistivity and the superconducting transition temperature of the encapsulated films. Our approach should be transferable to other materials and device geometries where more standard encapsulation techniques are not readily applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.