Abstract

Peptide-based self-assembling systems are increasingly attractive because of their wide range of applications in different fields. Peptide nanostructures are flexible with changes in the ambient conditions. Herein, a reversible shape transition between self-assembled dipeptide nanotubes (DPNTs) and vesicle-like structures is observed upon a change in the peptide concentration. SEM, TEM, AFM, and CD spectroscopy were used to follow this transition process. We show that dilution of a peptide-nanotube dispersion solution results in the formation of vesicle-like structures, which can then be reassembled into the nanotubes by concentrating the solution. A theoretical model describing this shape-transition phenomenon is presented to propose ways to engineer assembling molecules in order to devise other systems in which the morphology can be tuned on demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.