Abstract

Switching between association and dissociation is the well-known strategy for constructing responsive materials based on the host-guest complexes of cyclodextrins (CDs). In this work, we report that temperature may also trigger self-assembly transition in the supramolecular system composed of sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) at a molar ratio of 1:2. We reported previously that, at this ratio, SDS and β-CD form a channel-type SDS@2β-CD supramolecular unit, which further self-assembles into non-amphiphilic vesicles and microtubes driven by hydrogen bonding. Here, we report that the vesicles and microtubes can be reversibly switched between each other upon decreasing and increasing temperature. Control experiments in heavy water suggest that water molecules play a dominating role in the hydrogen bonding between SDS@2β-CD supramolecular units at lower concentration and higher temperature. Under opposite conditions, the hydrogen bonding between CDs is dominating. Therefore, for the 5% system, we observed a vesicle to microtube transition with a decreasing temperature, whereas for the 10% system, we observed the reverse process. Both processes are reversible. This is not only an example of temperature-triggered responsiveness in non-amphiphilic self-assemblies but also a new mode of responsiveness for the host-guest inclusion systems based on CDs. This temperature-responsive process is anticipated to shed light on the design and development of novel advanced materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.