Abstract

The density of states of proximitized normal nanowires interrupting superconducting rings can be tuned by the magnetic flux piercing the loop. Using these as the contacts of a single-electron transistor allows us to control the energetic mirror asymmetry of the conductor, thus introducing rectification properties. In particular, we show that the system works as a diode that rectifies both charge and heat currents and whose polarity can be reversed by the magnetic field and a gate voltage. We emphasize the role of dissipation at the island. The coupling to substrate phonons enhances the effect and furthermore introduces a channel for phase tunable conversion of heat exchanged with the environment into electrical current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.