Abstract

Introducing magnetic switchability into artificial molecular machines is fascinating for precise control of magnetism via external stimuli. Herein, a field-induced CoII single-molecule magnet was found to exhibit the reversible switch of Jahn-Teller distortion near room temperature, along with thermal conformational motion of the 18-crown-6 rotor, which pulls the coordinated H2 O to rotate through intermolecular hydrogen bonds and triggers a single-crystal-to-single-crystal phase transition with Twarm =282 K and Tcool =276 K. Interestingly, the molecular magnetic anisotropy probed by single-crystal angular-resolved magnetometry revealed the reorientation of easy axis by 14.6°. Moreover, ON/OFF negative magnetodielectric effects were respectively observed in the high-/low-temperature phase, which manifests the spin-lattice interaction in the high-temperature phase could be stronger, in accompanied by the hydrogen bonding between the rotating 18-crown-6 and the coordinated H2 O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.