Abstract

The role of noncovalent supramolecular self-assembly in the formation of melanin-like NP, as well as the nature of the electronic transition at the basis of their unique optical properties, is strongly debated. Here we demonstrate that, during the first stage of formation of synthetic melanin, polydopamine (PDA), a small fraction of the molecular precursor dopamine (DA) is oxidized to quinone (Q) and a simple supramolecular charge-transfer (CT) adduct is formed thanks to the electron donor and electron acceptor properties of DA and Q, respectively. This adduct, also detectable by HPLC-MS, presents the broad absorption band in the red-NIR region typical of melanin-like materials. Importantly, its disaggregation upon dilution can be easily detected since it leads to the disappearance of the CT band, indicating the reversibility of the process. Moreover, the stability constant K of the CT adduct could be obtained using a simple association model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.