Abstract

The self-assembly of a macrocyclic tetradentate ligand, cobalt(II) tetrafluoroborate, and nonlinear pseudohalides (dicyanamide and tricyanomethanide) has led to two cobalt(II) complexes, {[Co(L)(μ1,5-dca)](BF4)·MeOH}n (1) and [Co2(L)2(μ1,5-tcm)2](BF4)2 (2) (L = N,N'-di-tert-butyl-2,11-diaza[3,3](2,6)pyridinophane; dca- = dicyanamido; tcm- = tricyanomethanido). Both complexes were characterized by single-crystal X-ray diffraction, spectroscopic, magnetic, and electrochemical studies. Structural analyses revealed that 1 displays a one-dimensional (1D) coordination polymer containing [Co(L)]2+ repeating units bridged by μ1,5-dicyanamido groups in cis positions, while 2 represents a discreate dinuclear cobalt(II) molecule bridged by two μ1,5-tricyanomethanido groups in a cis conformation. Both complexes have a CoN6 coordination environment around each cobalt center offered by the tetradentate ligand and cis coordinating bridging ligands. Complex 1 exhibits a high-spin (S = 3/2) state of cobalt(II) in the temperature range of 2-300 K with a weak ferromagnetic coupling between two dicyanamido-bridged cobalt(II) centers. Interestingly, complex 2 exhibits reversible spin-state switching associated with spin-spin coupling. Complexes 1 and 2 also exhibit interesting redox-stimuli-based reversible paramagnetic high-spin cobalt(II) to diamagnetic low-spin cobalt(III) conversion, offering an additional way to switch magnetic properties. A detailed theoretical calculation was consistent with the stated results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.