Abstract
Using a combination of fluorescence and bright-field optical imaging, the solid-state packing structures of semi-confined two-layer spherical colloidal crystals were observed during modulation of an external AC electric field. Upon increasing field strength, the bottom layer of colloids (layer 1) transitioned from the entropically favored hexagonal packing structure with p6m symmetry to a square-packing structure with p4m symmetry. The packing structure of layer 2 was determined by the packing structure of layer 1, with layer 2 particles resting in, and moving in registry with, the low-energy interstitial sites of layer 1. Modulation of the field strength thus resulted in a reversible transition between a face-centered cubic crystal structure and a body-centered cubic crystal structure at low and high field strengths, respectively. These structures were found to be sensitive to the particle density in the wells, with vacancies and insertions leading to the formation of mixed crystal phases at high field strengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.