Abstract

The coupling of a reversible Solid Oxide Cell (rSOC) with an offshore wind turbine is investigated to evaluate the mutual benefits in terms of local energy management. This integrated system has been simulated with a dynamic model under a control algorithm which manages the rSOC operation in relation to the wind resource, implementing a local hydrogen storage with a double function: (i) assure power supply to the wind turbine auxiliary systems during power shortages, (ii) valorize the heat produced to cover the desalinization system needs. With an export-based strategy, which maximize the rSOC capacity factor, up to 15 tons of hydrogen could be produced for other purposes. The results show the compatibility between the auxiliary systems supply of a 2.3 MW wind turbine and a 120/21 kWe rSOC system which can cover the auxiliaries demand during wind shortages or maintenance. The total volume required by such a system occupy less than the 2%, if compared with the turbine tower volume. Additionally, thermal availability exceeds the desalination needs, representing a promising solution for small-scale onsite desalination in offshore environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.