Abstract

This work demonstrates that metal nanowires in a percolating network can reversibly slide across one another. Reversible sliding allows networks of metal nanowires to maintain electrical contact while being stretched to strains greater than the fracture strain for individual nanowires. This phenomenon was demonstrated by using networks of nanowires as compliant electrodes for a dielectric elastomer actuator. Reversible nanowire sliding enabled actuation to a maximum area strain of 200% and repetitive cycling of the actuator to an area strain of 25% over 150 times. During actuation, the transmittance of the network increased 4.5 times, from 13% to 58%. Compared to carbon-based compliant electrodes, networks of metal nanowires can actuate across a broader range of optical transmittance. The widely tunable transmittance of nanowire-based actuators allows for their use as a light valve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.