Abstract

It is known that low glucose concentrations increase the aspartate and decrease the glutamate content of brain tissue both in vivo and in vitro. To see whether these changes occur in the transmitter compartment or not, the release of aspartate and glutamate evoked by electrical-field stimulation or by high K+ was followed in slices of rat hippocampus superfused with 5 or 0.2 mM glucose. Superfusion with 0.2 mM glucose increased the evoked release of aspartate about ten times and that of glutamate about threefold. This shift in the ratio of aspartate to glutamate released was accompanied by a similar increase in the relative amount of aspartate contained in the slices. The high evoked release of aspartate and glutamate was well maintained, provided 0.5 mM glutamine was added to the medium. Changing the concentration of glucose after the first period of stimulation rapidly altered the relative amounts of aspartate and glutamate released but not the enhanced release of glutamate. The large evoked release of both aspartate and glutamate in 0.2 mM glucose was almost entirely Ca2+-dependent. The relative amounts of aspartate and glutamate released by 50 mM K+ also changed when the glucose concentration was reduced. Results suggest two effects of low glucose concentrations: an increase in the overflow of synaptically released glutamate due to a decreased uptake and an increase in the proportion of aspartate to glutamate formed and released from the transmitter pool. These observations are consistent with the interpretation that these two transmitters can be released in different proportions from the same terminals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call