Abstract

The reversible shift of emission in fluorescent molecular gelators has been explored for the preparation of a composite polymer film useful for erasable thermal imaging and secret documentation. A gelation-assisted photopolymerization of styrene allowed the entrapment of the fluorescent gelator molecules within a polystyrene matrix with a weak green fluorescence, which upon heating above the T(g) of the polymer resulted in high-contrast fluorescence images due to the strong blue fluorescence of the individual molecules. The blue emission from the disassembled oligo(p-phenylenevinylene) molecules (OPVs) could be reversed to the green emission of the self-assembled OPVs by exposing the polymer film to chloroform vapors. The thermally written images are visible only under UV light and cannot be photocopied. A solvent-vapor-controlled recreation of the self-assembly of a fluorescent organogelator within a polymer matrix and its application in erasable secret documentation has not been reported previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.