Abstract

The redox chemistry of magnesium and its application in rechargeable Mg batteries has received increasing attention owing to the unique benefits of Mg metal electrodes, namely high reversibility without dendrite formation, low reduction potentials, and high specific capacities. The Mg/S couple is of particular interest owing to its high energy density and low cost. Previous reports have confirmed the feasibility of a rechargeable Mg/S battery; however, only limited cycling stability was achieved, and the complicated procedure for the preparation of the electrolytes has significantly compromised the benefits of Mg/S chemistry and hindered the development of Mg/S batteries. Herein, we report the development of the first rechargeable Mg/S battery with a MgTFSI2 /MgCl2 /DME electrolyte (DME=1,2-dimethoxyethane, TFSI=bis(trifluoromethanesulfonyl)imide) and realize the best cycling stability among all reported Mg/S batteries by suppressing polysulfide dissolution. Mechanistic studies show that the battery works via S0 /MgSx redox processes and that the large voltage hysteresis is mainly due to the Mg anode overpotential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.