Abstract
This paper reports on a unique reversible reducing and oxidizing (redox) property of Co(III) in Co-doped amorphous SiO2/γ-Al2O3 composites. The Fenton reaction during the H2O2-catalyzed sol–gel synthesis utilized in this study lead to the partial formation of Co(III) in addition to Co(II) within the composites. High-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analyses for the composite powder sample with a composition of Al:Si:Co = 85:10:5 showed the amorphous state of the Co-doped SiO2 that modified γ-Al2O3 nanocrystalline surfaces. In situ X-ray absorption fine structure (XAFS) spectroscopic analysis suggested reversible redox reactions of Co species in the composite powder sample during heat-treatment under H2 at 500 °C followed by subsequent cooling to RT under Ar. Further analyses by in situ IR spectroscopy combined with cyclic temperature programmed reduction/desorption (TPR/TPD) measurements and X-ray photoelectron spectroscopic (XPS) analysis revealed that the alternating Co(III)/(II) redox reactions were associated with OH formation (hydrogenation)-deformation (dehydrogenation) of the amorphous aluminosilicate matrix formed in situ at the SiO2/γ-Al2O3 hetero interface, and the redox reactions were governed by the H2 partial pressure at 250–500 °C. As a result, a supported mesoporous γ-Al2O3/Co-doped amorphous SiO2/mesoporous γ-Al2O3 three-layered composite membrane exhibited an H2-triggered chemical valve property: mesopores under H2 flow (open) and micropores under He flow (closure) at 300–500 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.