Abstract

The ability to engineer and re-program the surfaces of cells would provide an enabling synthetic biological method for the design of cell- and tissue-based therapies. A new cell surface-engineering strategy is described that uses lipid-chemically self-assembled nanorings (lipid-CSANs) that can be used for the stable and reversible modification of any cell surface with a molecular reporter or targeting ligand. In the presence of a non-toxic FDA-approved drug, the nanorings were quickly disassembled and the cell-cell interactions reversed. Similar to T-cells genetically engineered to express chimeric antigen receptors (CARS), when activated peripheral blood mononuclear cells (PBMCs) were functionalized with the anti-EpCAM-lipid-CSANs, they were shown to selectively kill antigen-positive cancer cells. Taken together, these results demonstrate that lipid-CSANs have the potential to be a rapid, stable, and general method for the reversible engineering of cell surfaces and cell-cell interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.