Abstract

Using electromagnetically induced transparency in a cesium vapor, we demonstrate experimentally that the quantum state of a light beam can be mapped into the long-lived Zeeman coherences of an atomic ground state. Two noncommuting variables carried by light are simultaneously stored and subsequently read out, with no noise added. We compare the case where a tunable single sideband is stored independently of the other one to the case where the two symmetrical sidebands are stored using the same electromagnetically induced transparency window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.