Abstract
Quantum chaotic interacting N-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales ∼logN. Here, we show that, near criticality, certain many-body systems exhibit fast initial scrambling, followed subsequently by oscillatory behavior between reentrant localization and delocalization of information in Hilbert space. We consider both integrable and nonintegrable quantum critical bosonic systems with attractive contact interaction that exhibit locally unstable dynamics in the corresponding many-body phase space of the large-N limit. Semiclassical quantization of the latter accounts for many-body correlations in excellent agreement with simulations. Most notably, it predicts an asymptotically constant local level spacing ℏ/τ, again given by τ∼logN. This unique timescale governs the long-time behavior of out-of-time-order correlators that feature quasiperiodic recurrences indicating reversibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.