Abstract
Although protein kinase C (PKC) is a key enzyme in the signal transduction process, there is little information on the mechanism leading to PKC activation in living cells. Using a new fluorescence imaging method, we studied this mechanism and correlated PKC conformational changes with intracellular Ca2+ concentration. PC12 cells were simultaneously loaded with Fura-2-AM and Fim-1, two fluorescent probes, which recognize Ca2+ and PKC, respectively. KCl and carbachol (an agonist to muscarinic receptors) applications induced dose-dependent increases of fluorescence for both probes. Both Ca2+ and PKC responses were observed within seconds following KCl or carbachol application, and were reversible upon stimulus withdrawal. PKC activation kinetics was slightly more rapid than the Ca2+ response after KCl application. After nerve growth factor (NGF) treatment of the cells, the amplitude of the KCl-induced PKC responses was larger indicating an increase in the activated PKC-pool in these cells. This difference between control and NGF-treated cells was not observed following carbachol application, suggesting the involvement of different PKC pools. While the Ca2+ response uniformly occurred in the cytosol, the PKC response displayed a patch pattern with higher intensities in the peripheral zone near the plasma membrane. This heterogeneous distribution of PKC activation sites was similar to the immunocytological localization of Ca2+-dependent and independent PKC isoforms, which suggested that at least several PKC isoforms interacted with intracellular elements. Upon repeated stimulation, the PKC response rapidly desensitized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.